Product Code Database
Example Keywords: playback -ring $11-140
   » Wiki: Unit Of Measurement
Tag Wiki 'Unit Of Measurement'.
Tag

A unit of measurement, or unit of measure, is a definite magnitude of a , defined and adopted by convention or by law, that is used as a standard for of the same kind of quantity.. Any other quantity of that kind can be expressed as a multiple of the unit of measurement.

For example, a is a physical quantity. The (symbol m) is a unit of length that represents a definite predetermined length. For instance, when referencing "10 metres" (or 10 m), what is actually meant is 10 times the definite predetermined length called "metre".

The definition, agreement, and practical use of units of measurement have played a crucial role in human endeavour from early ages up to the present. A multitude of systems of units used to be very common. Now there is a global standard, the International System of Units (SI), the modern form of the .

In trade, weights and measures are often a subject of governmental regulation, to ensure fairness and transparency. The International Bureau of Weights and Measures (BIPM) is tasked with ensuring worldwide uniformity of measurements and their traceability to the International System of Units (SI).

is the science of developing nationally and internationally accepted units of measurement.

In and metrology, units are standards for of physical quantities that need clear definitions to be useful. of experimental results is central to the scientific method. A standard system of units facilitates this. Scientific systems of units are a refinement of the concept of weights and measures historically developed for commercial purposes.

, , and often use larger and smaller units of measurement than those used in everyday life. The judicious selection of the units of measurement can aid researchers in (see, for example, dimensional analysis).


History
A unit of measurement is a standardized of a physical property, used as a factor to express occurring quantities of that property. Units of measurement were among the earliest tools invented by humans. Primitive societies needed rudimentary measures for many tasks: constructing dwellings of an appropriate size and shape, fashioning clothing, or bartering food or raw materials. Before the establishment of the decimal in during the French Revolution in the late 18th century, many units of length were based on parts of the .

The earliest known uniform systems of measurement seem to have all been created sometime in the 4th and 3rd millennia BC among the ancient peoples of , and the Indus Valley, and perhaps also in as well.

Weights and measures are mentioned in the (Leviticus 19:35–36). It is a commandment to be honest and have fair measures.

In the of 1215 (The Great Charter) with the seal of King John, put before him by the Barons of England, King John agreed in Clause 35 "There shall be one measure of wine throughout our whole realm, and one measure of ale and one measure of corn—namely, the London quart;—and one width of dyed and russet and hauberk cloths—namely, two ells below the selvage..."

As of the 21st century, the International System is predominantly used in the world. There exist other unit systems which are used in many places such as the United States Customary System and the Imperial System. The United States is the only industrialized country that has not yet at least mostly converted to the metric system.

(2025). 9783031284359, Springer International Publishing.
The systematic effort to develop a universally acceptable system of units dates back to 1790 when the French National Assembly charged the French Academy of Sciences to come up such a unit system. This system was the precursor to the metric system which was quickly developed in France but did not take on universal acceptance until 1875 when The Metric Convention Treaty was signed by 17 nations. After this treaty was signed, a General Conference of Weights and Measures (CGPM) was established. The CGPM produced the current SI, which was adopted in 1954 at the 10th Conference of Weights and Measures. Currently, the United States is a dual-system society which uses both the SI and the US Customary system.
(2025). 9780073398174, McGraw Hill.
(2025). 9780521769174, Cambridge University Press.


Systems of units
The use of a single unit of measurement for some quantity has obvious drawbacks. For example, it is impractical to use the same unit for the distance between two cities and the length of a needle. Thus, historically they would develop independently. One way to make large numbers or small fractions easier to read, is to use .

At some point in time though, the need to relate the two units might arise, and consequently the need to choose one unit as defining the other or vice versa. For example, an could be defined in terms of a barleycorn. A system of measurement is a collection of units of measurement and rules relating them to each other.

As progressed, a need arose to relate the measurement systems of different quantities, like length and weight and volume. The effort of attempting to relate different traditional systems between each other exposed many inconsistencies, and brought about the development of new units and systems.

Systems of units vary from country to country. Some of the different systems include the centimetre–gram–second, foot–pound–second, metre–kilogram–second systems, and the International System of Units, SI. Among the different systems of units used in the world, the most widely used and internationally accepted one is SI. The base SI units are the second, metre, kilogram, ampere, kelvin, mole and candela; all other SI units are derived from these base units.

Systems of measurement in modern use include the , the , and United States customary units.


Traditional systems
Historically many of the systems of measurement which had been in use were to some extent based on the dimensions of the human body. Such units, which may be called , include the , based on the length of the forearm; the pace, based on the length of a stride; and the foot and hand.Crease, Robert P. World in the balance: The historic quest for an absolute system of measurement. WW Norton & Company, 2011. As a result, units of measure could vary not only from location to location but from person to person. Units not based on the human body could be based on agriculture, as is the case with the and the , both based on the amount of land able to be worked by a team of . Another measure of land used in the was the "caracute".Brampton Parish Council, Brampton, Norfolk, accessed on 18 February 2025


Metric systems
of units have evolved since the adoption of the original metric system in in 1791. The current international standard metric system is the International System of Units (abbreviated to SI). An important feature of modern systems is . Each unit has a universally recognized size.

Both the and US customary units derive from earlier . Imperial units were mostly used in the British Commonwealth and the former . US customary units are still the main system of measurement used in the outside of science, medicine, many sectors of industry, and some of government and military, and despite Congress having legally authorised metric measure on 28 July 1866.

as amended by Public Law 110–69 dated 9 August 2007 Some steps towards US [[metrication]] have been made, particularly the redefinition of basic US and imperial units to derive exactly from SI units. Since the international yard and pound agreement of 1959 the US and imperial inch is now defined as exactly , and the US and imperial avoirdupois pound is now defined as exactly .
     


Natural systems
While the above systems of units are based on arbitrary unit values, formalised as standards, in physics are based on physical principle or are selected to make physical equations easier to work with. For example, (au) were designed to simplify the wave equation in .

Some unusual and non-standard units may be encountered in sciences. These may include the (), the (the energy released by detonating one million tons of , TNT) and the .


Legal control of weights and measures
To reduce the incidence of retail fraud, many national have standard definitions of weights and measures that may be used (hence ""), and these are verified by legal officers.


Informal comparison to familiar concepts
In informal settings, a quantity may be described as multiples of that of a familiar entity, which can be easier to contextualize than a value in a formal unit system. For instance, a publication may describe an area in a foreign country as a number of multiples of the area of a region local to the readership. The propensity for certain concepts to be used frequently can give rise to loosely defined "systems" of units.


Base and derived units
For most quantities a unit is necessary to communicate values of that physical quantity. For example, conveying to someone a particular length without using some sort of unit is impossible, because a length cannot be described without a reference used to make sense of the value given.

But not all quantities require a unit of their own. Using physical laws, units of quantities can be expressed as combinations of units of other quantities. Thus only a small set of units is required. These units are taken as the base units and the other units are derived units. Thus base units are the units of the quantities which are independent of other quantities and they are the units of length, mass, time, electric current, temperature, luminous intensity and the amount of substance. Derived units are the units of the quantities which are derived from the base quantities and some of the derived units are the units of speed, work, acceleration, energy, pressure etc.

Different systems of units are based on different choices of a set of related units including fundamental and derived units.


Physical quantity components

Dimensional homogeneity
Units can only be added or subtracted if they are the same type; however units can always be multiplied or divided, as used to explain. Let Z be "2 metres" and W "3 seconds", then

2\,\mathrm{metres} \times 3\,\mathrm{seconds} = \{Z\}\{W\} \times ZW = 6 \, \mathrm{metres} \times \mathrm{seconds}.

There are certain rules that apply to units:

  • Only like terms may be added. When a unit is divided by itself, the division yields a unitless one. When two different units are multiplied or divided, the result is a new unit, referred to by the combination of the units. For instance, in SI, the unit of speed is metre per second (m/s). See dimensional analysis. A unit can be multiplied by itself, creating a unit with an exponent (e.g. m2/s2). Put simply, units obey the laws of indices. (See .)
  • Some units have special names, however these should be treated like their equivalents. For example, one newton (N) is equivalent to 1 kg⋅m/s2. Thus a quantity may have several unit designations, for example: the unit for can be referred to as either N/m (newton per metre) or kg/s2 (kilogram per second squared).


Converting units of measurement

In software development
Software developers in a wide variety of fields including scientific, healthcare and financial applications have sought to adopt approaches that reduce bugs and mistakes involving units of measurement. In object-oriented programming, this is often achieved using the Quantity pattern to pair together the value and the unit.
(1997). 9780201895421, Addison Wesley.
(In financial applications, it is common to represent monetary values by storing them with the currency—this is often known as the 'Money pattern'.) The programming language F# has syntactic support for representing units of measure, converting between them, and checking their type safety at compile-time.


Real-world implications
One example of the importance of agreed units is the failure of the Mars Climate Orbiter, which was accidentally destroyed on a mission to Mars in September 1999 (instead of entering orbit) due to miscommunications about the value of forces: different computer programs used different units of measurement (newton versus ). Considerable amounts of effort, time, and money were wasted.

On 15 April 1999, cargo flight 6316 from to was lost due to the crew confusing tower instructions (in metres) and altimeter readings (in feet). Three crew and five people on the ground were killed. Thirty-seven were injured.

In 1983, a Boeing 767 (which thanks to its pilot's gliding skills landed safely and became known as the ) ran out of fuel in mid-flight because of two mistakes in figuring the fuel supply of 's first aircraft to use metric measurements. This accident was the result of both confusion due to the simultaneous use of metric and Imperial measures and confusion of mass and volume measures.

When planning his journey across the Atlantic Ocean in the 1480s, Columbus mistakenly assumed that the referred to in the Arabic estimate of miles for the size of a degree was the same as the actually much shorter Italian mile of 1,480 metres. His estimate for the size of the degree and for the circumference of the Earth was therefore about 25% too small.Nunn, George Emra. "The geographical conceptions of Columbus: a critical consideration of four problems". No. 14. New York: American Geographical Society, 1924. 1–2 17-18


See also
  • Dimensional metrology
  • Forensic metrology
  • Quantum metrology
  • List of humorous units of measurement
  • List of obsolete units of measurement
  • List of unusual units of measurement
  • List of metric units
  • Numerical-value equation
  • Scottish units
  • Space (punctuation)#Unit symbols and numbers
  • System of measurement
  • Unified Code for Units of Measure
  • United States customary units
  • Unit of account
  • Units of information


External links

Historical

Legal

Metric information

Page 1 of 1
1
Page 1 of 1
1

Account

Social:
Pages:  ..   .. 
Items:  .. 

Navigation

General: Atom Feed Atom Feed  .. 
Help:  ..   .. 
Category:  ..   .. 
Media:  ..   .. 
Posts:  ..   ..   .. 

Statistics

Page:  .. 
Summary:  .. 
1 Tags
10/10 Page Rank
5 Page Refs
1s Time